Экг дополнительные отведения

Отведения ЭКГ – что это такое

Электрокардиография – инструментальный метод диагностики, позволяющий исследовать электрические поля, возникающие при сердечных сокращениях. Преимуществом метода считается его относительная дешевизна и ценность полученных данных во время проведения процедуры.

Оглавление:

С ее помощью удается определить частоту сердечных сокращений, нарушения в работе миокарда и сердечной проводимости, оценить физическое состояние сердечной мышцы.

Во время проведения ЭКГ используется такое понятие, как электрокардиографические отведения (разница потенциалов в электрокардиографии). Во время диагностики болезней сердца применяют отведения ЭКГ в области рук, ног и грудины.

Показания к проведению электрокардиографии

Использование ЭКГ показано в следующих случаях:

  • при плановых обследованиях, профилактических осмотрах;
  • для оценки состояния сердечной мышцы у пациентов перед предстоящим хирургическим вмешательством;
  • во время обследования пациентов с такими болезнями, как сахарный диабет, патологии легких, щитовидной железы, заболеваниях эндокринной системы;
  • для диагностики артериальной гипертензии;
  • во время постановки диагноза при ишемии сердца, мерцательной аритмии, для выяснения, какая стенка органа поражена;
  • для выявления пороков сердца у новорожденных и взрослых пациентов;
  • при обнаружении нарушения сердечного ритма и проводимости сердечных импульсов;
  • с целью контроля состояния сердечной мышцы во время проведения медицинского лечения.

Электрический потенциал в ЭКГ

Многие пациенты интересуются, почему при исследовании сердечной мышцы электроды прибора располагают не только на грудь, но и в области конечностей? Чтобы понять это, следует выяснить некоторые особенности функционирования органа. Сердце во время сокращений синтезирует определенные электрические сигналы, создавая некое электрическое поле, распространяющееся по всему организму, включая правые и левые конечности. Данные волны расходятся по телу концентрическими окружностями. При измерении потенциала на их любом участке, электрокардиограф покажет равные значения потенциала. Одинаковый электрический потенциал в любой точке называют в медицинской практике эквипотенциальными. Вышеописанные измерения проводят в области кистей рук и ног.

Во время проведения электрокардиографии используются специальные датчики, фиксирующиеся на груди и конечностях больного

Другой такой окружностью является грудная клетка человека. Данные электрокардиографии часто записывают с поверхности сердечной мышцы (при открытом хирургическом вмешательстве в области сердца), от других отделов проводящей системы органа, например, от пучка Гиса и других. То есть запись кривой линии ЭКГ выполняется с помощью регистрации показателей электрических сигналов грудной клетки и конечностей. При этом врачи получают кардиограмму, записанную во всех отведениях, так как электрические потенциалы сердечной мышцы как бы отводятся от определенных частей тела.

Виды отведений

Наиболее часто применяют 12 отведений ЭКГ. Сюда относят:

  • три стандартные отведения;
  • три усиленные;
  • шесть отведений от груди.

Отведения стандартного типа

Каждая из конкретных точек электрического поля обладает собственным потенциалом. Электрокардиография позволяет зафиксировать разность потенциалов в нескольких измеряемых точках.

Стандартные отведения регистрируются следующим образом:

  • 1 отведение – при этом положительный электрод фиксируют на левой руке, отрицательный на правой руке;
  • 2 отведение – датчик со значением плюс на левой ноге, отрицательный электрод на правой руке;
  • 3 отведение – на левой ноге прикрепляют положительный электрод, на левой руке – отрицательный.

Показатели первого, второго и третьего отведения отвечают за работу того или иного участка сердечной мышцы.

Во время ЭКГ основным типом считаются стандартные отведения

Отведения усиленного характера

Данные фиксируются благодаря получению разницы между электрическим потенциалом одной из конечностей, в область которой прикрепляется положительный электрод, и средними показателями потенциалов других конечностей.

Такие отведений на схеме обозначаются сочетанием букв aVF, aVL и aVR.

Соединение электрического центра сердечной мышцы с областью прикрепления электрода определяет ось усиленных однополюсных отведений. Эта ось делится на две равные части. Одна из них положительная, направлена к активному электроду. Вторая – отрицательная, направлена в сторону электрода Гольдберга с отрицательным зарядом.

Отведения грудного отдела

Отведения электрокардиографии в области грудной клетки обозначаются буквой V, предложены Вильсоном. Во время проведения электрокардиографии применяют 6 грудных отведений. Для этого электрод размещают на той или иной точке грудной клетки. Грудные отведения ЭКГ схематически обозначаются сочетанием латинских букв и цифр.

Область прикрепления электродов:

  • область четвертого межреберного отдела справа от грудной клетки – V1;
  • область четвертого межреберного отдела слева от грудной клетки – V2;
  • область между V2 и V4 – V3;
  • средняя линия ключицы и пятое межреберное пространство – V4;
  • передняя подмышечная линия и область пятого межреберья – V5;
  • средняя часть подмышечной области и пространство шестого межреберья – V6.

Грудные отведения располагаются в области грудины больного

Использование ЭКГ в 12 отведениях наиболее распространенный вариант. Электрокардиографические нарушения в каждом из них определяют общую электродвижущую силу сердца, то есть выступают следствием одновременного влияния на отведение изменяющегося электрического потенциала в стенках сердца, отделах желудочков, верхней части органа и в его основании.

Дополнительные отведения

Для получения более точных сведений о состоянии сердечной мышцы во время электрокардиографии используют дополнительные отведения по Нэбу. Для проведения этого вида диагностики применяют датчики, которые обычно используют для стандартных отведений.

Данные отведений по Нэбу помогают выявить патологические состояния, связанные с нарушениями миокарда заднего отдела органа, передней стенки и верхних отделов сердца.

Как работает электрокардиограф

Электрокардиограф – это прибор, предназначенный для выявления различных патологий и заболеваний сердечной мышцы. Основан метод диагностики на получении разницы электрических потенциалов. При нормальной работе сердца эта разница выражена слабо или отсутствует.

Большинство стандартных аппаратов оснащены 12 кабелями отведений и 10 электродами. Во время проведения процедуры 6 электродов крепятся на грудной клетке больного, остальные 4 на нижних и верхних конечностях. Электрические импульсы проходят по электродам в отведения. При этом прибор фиксирует данные, записывая их в виде графика. Полученная кардиограмма используется для постановки диагноза.

Электрокардиограф – прибор, позволяющий зафиксировать электрические импульсы сердца на бумаге в виде графика

Расшифровка данных проводится врачом, с их помощью определяют следующие показатели:

  • частоту сердечных сокращений;
  • дефекты сердечной проводимости;
  • какая стенка сердца поражена;
  • регулярность сокращений;
  • обменные нарушения электролитного баланса органа;
  • нормальное или патологическое состояние миокарда;
  • физическую оценку состояния сердечной мышцы.

Электрокардиография позволяет выявить как серьезные патологии и пороки сердца, так и незначительные нарушения, не требующие серьезного лечения.

Чаще для диагностики используют стандартную схему проведения, но в медицинской практике могут применяться несколько видов электрокардиографии:

  • внутрипищеводная – при этом больному вводят активный электрод в пищевод. Данный вид исследования используется для дифференциальной диагностики наджелудочковых нарушений с желудочковыми;
  • электрокардиография по Холтеру – процедуру повторяют на протяжении длительного времени, фиксируя и сравнивая полученные данные;
  • велоэргометрия – проведение процедуры во время физической нагрузки на организм (с помощью велотренажера);
  • электрокардиография с высоким разрешением и другие методы.

Каждый из видов лабораторного исследования назначается врачом в соответствии с особенностями течения заболеваний и показаниями у больного.

Нужна ли подготовка к ЭКГ

Специфической подготовки к проведению ЭКГ не требуется, но для того чтобы получить максимально правильные результаты исследования стоит учитывать несколько аспектов. За день до проведения диагностики специалисты рекомендуют:

  • хорошо выспаться;
  • постараться исключить чрезмерные эмоциональные переживания;
  • внутри-пищевую электрокардиографию проводят исключительно на голодный желудок;
  • за несколько часов до исследования рекомендуется сократить прием жидкости и пищи;
  • во время диагностики нужно снять одежду, расслабится, не нервничать.

Накануне перед процедурой следует отказаться от курения, употребления алкоголя.

Во время процедуры ЭКГ больному рекомендуется расслабиться, ровно дышать

Не стоит заниматься спортом и тяжелой физической работой. Если необходим прием тех или иных препаратов, это обязательно оговаривается с лечащим врачом. Кроме этого, не рекомендуется посещать сауну, баню, выполнять другие процедуры, связанные с воздействием тепла на организм.

Как расшифровывается ЭКГ

Анализ кардиограммы расшифровывается исключительно специалистом. Показатели включают зубцы P, Q, R, S, T и сегменты ST и PQ. В свою очередь, зубцы, направленные вверх, называют положительными, вниз – отрицательными.

Основные показатели ЭКГ:

  • источник возбуждения при нормальном состоянии сопровождается синусовым ритмом;
  • частота ритма – промежуток между R зубцами не более 10%;
  • нормальная частота сокращений сердца –ударов/мин;
  • поворот электрической оси сердечной мышцы – от полугоризонтального до полувертикального;
  • R зубец сопровождается положительным характером;
  • T зубец – должен быть положительным;
  • участок PQ – от 0.02 до 0.09 сек;
  • участок ST – проходит по изолинии, в норме могут быть отклонения не более чем на 0.5 мм.

Электрокардиография – это часто используемый в медицинской практике метод, позволяющий за короткий отрывок времени получить подробную информацию о состоянии сердца и некоторых других органов. Данные, полученные во время диагностики, применяются для выявления многих заболеваний, помогают своевременно начать лечение, предотвратить серьезные осложнения.

Что такое отведения на ЭКГ

Несмотря на прогрессивное развитие медицинских методов диагностики, электрокардиография является наиболее востребованным. Данная процедура позволяет быстро и точно установить нарушения работы сердца и их причину. Обследование является доступным, безболезненным и неинвазивным. Декодирование результатов производится незамедлительно, кардиолог может достоверно определить заболевание, и своевременно назначить правильную терапию.

Метод ЭКГ и обозначения на графике

Вследствие сокращения и расслабления сердечной мышцы возникают электрические импульсы. Так, создается электрополе, охватывающее все тело (включая ноги и руки). В ходе своей работы, сердечная мышца образует электрические потенциалы с положительным и отрицательным полюсом. Разность потенциалов между двумя электродами сердечного электрического поля регистрируется в отведениях.

Таким образом, отведения ЭКГ – это схема расположения сопряженных точек тела, которые имеют различные потенциалы. Электрокардиограф регистрирует сигналы, полученные за определенный временной период, и преобразует их в наглядный график на бумаге. На горизонтальной линии графика производится регистрация временного диапазона, на вертикальной – глубина и частота трансформации (изменения) импульсов.

Направление тока к активному электроду фиксирует положительный зубец, удаление тока – зубец отрицательный. На графическом изображении зубцы представлены острыми углами, расположенными сверху (зубец «плюс») и снизу (зубец «минус»). Слишком высокие зубцы свидетельствуют о патологии в том, или ином сердечном отделе.

Обозначения и показатели зубцов:

  • Т-зубец – это показатель восстановительного этапа мышечной ткани желудочков сердца между сокращениями среднего мышечного слоя сердца (миокарда);
  • зубец Р отображает уровень деполяризации (возбуждения) предсердий;
  • Q, R, S – эти зубцы показывают ажитацию сердечных желудочков (возбужденное состояние);
  • зубец U отражает восстановительный цикл отдаленных участков желудочков сердца.

Подробнее об отведениях

Для точной диагностики фиксируется разность показателей электродов (электрический потенциал отведения), закрепленных на теле пациента. В современной кардиологической практике принято 12 отведений:

Диагностику проводят только те специалисты, которые получили соответствующую квалификацию

Стандартные или двухполюсные отведения фиксируются разностью потенциалов, исходящих от электродов, закрепленных в следующих областях тела пациента:

  • левая рука – электрод «+», правая – минус (первое отведение — I);
  • левая нога – датчик «+», правая рука – минус (второе отведение — II);
  • левая нога – плюс, левая рука – минус (третье отведение — III).

Электроды для стандартных отведений закрепляются клипсами в нижней части конечностей. Проводником между кожей и датчиками служат обработанные физраствором салфетки или медицинский гель. Отдельный вспомогательный электрод, установленный на правой ноге, выполняет функцию заземления. Усиленные или однополюсные отведения, по способу фиксации на теле, идентичны стандартным.

Электрод, который регистрирует изменения разности потенциалов между конечностями и электрическим нулем, на схеме имеет «V»-обозначение. Левая и правая рука, обозначаются «L» и «R» (от английского «левые», «правые»), нога соответствует букве «F» (нога). Таким образом, место прикрепления электрода к телу на графическом изображении определяется, как аVL, аVR, аVF. Они фиксируют потенциал конечностей, на которых закреплены.

Двухполюсные стандартные и однополюсные усиленные отведения обуславливают формирование системы координат из 6 осей. Угол между стандартными отведениями составляет 60 градусов, между стандартным и близлежащим к нему усиленным отведением – 30 градусов. Сердечный электроцентр разбивает оси пополам. Минусовая ось направлена к отрицательному электроду, плюсовая ось, соответственно, обращена к положительному.

Грудные отведения ЭКГ регистрируются однополюсными датчиками, прикрепленными к кожному покрову грудной клетки посредством шести присосок, соединенных лентой. Они фиксируют импульсы с окружности сердечного поля, которая является равно потенциальной к электродам на конечностях. На бумажном графике грудным отведениям соответствует обозначение «V» с порядковым номером.

Кардиологическое исследование выполняется по определенному алгоритму, поэтому стандартная система установки электродов в области груди, не может быть изменена:

  • в районе четвертого анатомического пространства между ребрами с правой стороны грудины – V1. В том же сегменте, только с левой стороны – V2;
  • соединение линии, идущей от середины ключицы и пятого межреберья – V4;
  • на одинаковом расстоянии от V2 и V4 располагается отведение V3;
  • соединение передней подмышечной линии слева и пятого межреберного пространства – V5;
  • пересечение левой средней части подмышечной линии и шестого пространства между ребрами – V6.

Дополнительные электроды используются в случае затруднения постановки диагноза, когда декодирование шести основных показателей не дает объективной картины заболевания

Каждое отведение на груди осью соединено с электроцентром сердца. При этом угол расположения V1–V5 и угол V2–V6 равняется 90 градусам. Клиническая картина работы сердца может фиксироваться кардиографом при помощи 9-ти ответвлений. К шести обычным добавляются три однополюсных отведения:

  • V7 – в месте соединения 5-го межреберного пространства и задней линии подмышки;
  • V8 – та же межреберная область, но по средней линии подмышки;
  • V9 – околопозвоночная зона, параллельно V7 и V8 по горизонтали.

Отделы сердца и отвечающие за них отведения

Каждое из шести основных отведений отображает тот, или иной отдел сердечной мышцы:

  • I и II стандартные отведения – передняя и задняя сердечные стенки, соответственно. Их совокупность отражает III стандартное отведение.
  • aVR – боковая сердечная стенка справа;
  • aVL – боковая сердечная стенка впереди слева;
  • aVF – нижняя стенка сердца сзади;
  • V1 и V2 – правый желудочек;
  • VЗ – перегородка между двумя желудочками;
  • V4 – верхний сердечный отдел;
  • V5 – боковая стенка левого желудочка спереди;
  • V6 – левый желудочек.

Таким образом, упрощается расшифровка электрокардиограммы. Сбои в каждом отдельном ответвлении характеризуют патологию определенной области сердца.

ЭКГ по Небу

В методике ЭКГ по Небу принято использование только трех электродов. Датчики красного и желтого цвета фиксируются на пятом межреберном пространстве. Красный справа на груди, желтый – на задней поверхности подмышечной линии. Зеленый электрод располагается на линии середины ключицы. Чаще всего, электрокардиограмма по Небу применяется для диагностики некроза задней сердечной стенки (заднебазальный инфаркт миокарда), и для контроля состояния сердечных мышц у профессиональных спортсменов.

Схематичное расположение желудочков и предсердий, на основании локализации которых и располагают электроды

Нормативные показатели основных ЭКГ-параметров

Нормальными ЭКГ показателями принято считать следующее расположение зубцов в отведениях:

  • равноценное расстояние между R-зубцами;
  • зубец Р всегда положительный (возможно его отсутствие в отведениях III, V1, aVL);
  • горизонтальный интервал между Р-зубцом и Q-зубцом – не более 0,2 сек.;
  • зубцы S и R присутствуют во всех отведениях;
  • Q-зубец – исключительно отрицательный;
  • зубец Т – положительный, всегда изображен после QRS.

Снятие ЭКГ производится амбулаторно, в условиях стационара, и на дому. Декодированием результатов занимается врач-кардиолог или терапевт. В случае несоответствия полученных показателей установленной норме, пациента госпитализируют или назначают лечение медикаментами.

Дополнительные отведения

Диагностические возможности электрокардиографического исследования могут быть расширены при применении некоторых дополнительных отведений. Их использование особенно целесо­образно в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет достаточно надежно диагностировать ту или иную электрокардиографическую патоло— гию или требует уточнения некоторых количественных парамет­ ров выявленных изменений.

Методика регистрации дополнительных грудных отведений от­ личается от методики записи 6 общепринятых грудных отведений

лишь локализацией активного электрода на поверхности грудной клетки. В качестве электрода, соединенного с отрицательным пог- люсом кардиографа, используют объединенный электрод Виль­ сона.

Отведения V 7 — V 9 . Активный электрод устанавливают по задней подмышечной ( V 7 ), лопаточной ( Vg ) и паравертебральной ( V 9 ) линиям на уровне горизонтали, на которой расположены элек­ троды V 4 — V 6 (рис. 2.9). Эти отведения обычно используют для бо­ лее точной диагностики очаговых измененний миокарда в задие- базальных отделах левого желудочка.

Отведения V 3B — V : грудной (активный) электрод помещают на правой половине грудной клетки в позициях, симметричных обычным точкам расположения электродов V 3 — V 6 . Эти отведения используют для диагностики гипертрофии правых отделов сердца.

Отведения по Нэбу. Двухполюсные грудные отведения, предло­ женные в 1938 г . Нэбом, фиксируют разность потенциалов между двумя точками, расположенными на поверхности грудной клетки. Для записи трех отведений по Нэбу применяют электроды, обыч­но используемые для регистрации трех стандартных отведений от конечностей. Электрод, обычно устанавливаемый на правой руке (красная маркировка провода), помещают во втором межреберье по правому краю грудины; электрод с левой ноги (зеленая марки­ ровка) переставляют в позицию грудного отведения V 4 (у верхуш—

ки сердца), а электрод, располагающийся на левой руке (желтая маркировка), помещают на том же горизонтальном уровне, что и зеленый электрод, но по задней подмышечной линии. Если пере­ ключатель отведений электрокардиографа находится в положении I стандартного отведения, регистрируют отведение Dorsalis ( D ). Перемещая переключатель на II и III стандартные отведения, за­ писывают соответственно отведения Anterior * (А) и Inferior ( I ). Отведения по Нэбу находят применение для диагностики очаго­ вых изменений миокарда задней стенки (отведение D ), передней боковой стенки (отведение А) и верхних отделов передней стенки (отведение I ).

Прекардиальная картография. В последние годы все большее рас­ пространение в клинической практике получает методика регис­ трации так называемой прекардиальной картограммы (Магоко и соавт., 3.3. Дорофеева, Г.В. Рябыкина, А.В. Виноградов) в 35 точ­ ках на передней и боковой поверхности грудной клетки. Электро­ды устанавливают пятью горизонтальными рядами от второго до шестого межреберья по 7 электродов в каждом ряду. Электроды располагаются от правой парастернальной до левой задней под­ мышечной линии. На рис. 2.10 изображена регистрация прекарди­ альной картограммы с помощью специального многоэлектродно— го пояса отечественного производства.

Прекардиальная картография позволяет исследовать большую зону миокарда, уточнять локализацию очаговых изменений мио— карда, а также измерять размеры некротической и периинфаркт— ной зоны при остром инфаркте миокарда.

Разновидности отведений ЭКГ: стандартные и дополнительные методы диагностики

Электрокардиография – методика, позволяющая оценить сердечные мышечные сокращения за счет изучения их электрических полей. Основное преимущества способа – дешевизна и быстрота проводимых манипуляций. Важно отметить и диагностическую ценность исследования: благодаря электрокардиографии врач определяет проблемные зоны на различных участках сердца, аномалии сердечной проводимости и оценивает работу миокарда.

Что такое потенциал

Прежде чем разобраться с таким понятием, как электрокардиографические отведения, стоит узнать о том, что такое электрический потенциал сердца. Для его регистрации врач прикладывает датчики на руки и ноги пациента.

При сокращении сердце создает около себя электрические поля, располагающиеся по окружности. Потенциал в точках окружности имеет одинаковые значения. По этой причине электрические поля, создаваемые сердцем, называют эквипотенциальными.

Конечности человека – руки и ноги располагаются на одной эквипотенциальной зоне. При наложении на эту зону электродов получается электрокардиограмма. Выполнить исследование возможно и с точек другой окружности, которая отвечает за грудную клетку. В некоторых случаях ЭКГ снимают с непосредственно поверхности органа, например, при операциях на сердце.

Графический результат получают путем присоединения электродов к определенным зонам на теле. Каждое из возможных положений электродов дает свою электрокардиограмму. То есть ЭКГ отведения по-другому можно назвать определенной схемой расположения датчиков.

Для диагностики сердечно-сосудистых патологий обычно используют ЭКГ в 12 отведениях. Среди них выделяют:

  • 3 стандартных отведения;
  • 3 однополюсных (усиленных);
  • 6 отведений от области грудной клетки.

Исследование позволяет сделать комплексную диагностику сердца. Благодаря методике оценивают общее состояние органа и выявляют имеющиеся патологии на графике ЭКГ.

Стандартные отведения

Точки поля характеризуются наличием собственной энергии. ЭКГ позволяет зафиксировать различия между потенциалами в определенных точках сферы. Стандартную схему диагностики выполняют в 3 этапа:

  1. Электрод с положительным зарядом располагают на левой руке, а с отрицательным – на правой.
  2. Электрод, имеющий положительный заряд фиксируют на левой ноге, датчик с отрицательным значением – на правой верхней конечности.
  3. К нижней левой конечности прикрепляют положительный электрод, а к руке с той же стороны – отрицательный.

По показаниям всех трех отведений специалист определяет работоспособность различных участков органа. Соответствующее подключение на приборе обозначается знаками «плюс» или «минус». Первая, вторая и третья схема подключений по внешнему виду напоминают равносторонний треугольник. Каждый угол фигуры – это две руки и левая нога пациента, к которым прикреплены электроды. В центре треугольника Эйнтховена располагается энергетический источник, равноудаленный от всех сторон и углов фигуры. По показаниям всех трех отведений специалист определяет работоспособность различных участков органа.

Усиленные отведения

Во внимание принимаются данные, которые характеризуют разность потенциалов точек, расположенных в пределах одной конечности, а также усредненные значения электрических полей в других областях тела.

Усиленная схема установки датчиков имеют следующие аббревиатуры:

Следует знать! Ось отведений по усиленной схеме принято делить на 2 зоны: первая — направленная в сторону активного датчика, вторая – расположенная в стороне датчика с отрицательным зарядом.

Грудные отведения

Электрокардиографические отведения имеют аббревиатуры – V. Данный тип отведений предложен ученым Вильсоном. Во время исследования применяют 6 стандартных отведений. Грудные электроды размещают в разных точках грудной клетки. В медицине такие отведения принято обозначать сочетанием цифр и латинской буквы.

Во время проведения ЭКГ электроды прикрепляют к следующим областям:

  • в зону четвертого межреберного пространства, расположенного по правую сторону – V1;
  • в зону четвертого межреберного пространства, расположенного по левую сторону — V2;
  • в зону между точками V1 и V2;
  • в пространство между 5 и 6 ребром и ключицей – V4;
  • в пространство между 5 и 6 ребром и передней линией подмышечной впадины– V5;
  • на пространство между 6 ребром и средней частью подмышечной впадины – V

Электрокардиография, проводимая на каждом из участков тела, позволяет определить электродвижущий показатель системы кровообращения.

Значение отведений

Показатели, полученные в результате ЭКГ, делятся на скалярные и векторные. В первом случае оцениваются лишь численные характеристики – масса, температура, объем. Векторные значения характеризуют не только показатели величины, но и направления, например, силу, напряженность поля, скорость.

Следует знать! Для чего используется 12 отведений ЭКГ? На пленке, полученной в результате исследования, врач может увидеть только двухмерные величины. По этой причине прибор записывает показания на плоскости во времени.

Грудные отведения ЭКГ (оставшиеся 6) отражают электродвижущую силу органа кровообращения в горизонтальной плоскости. Благодаря этому врач может определить точное расположение патологического процесса.

Дополнительные схемы

Для расширенной диагностики патологий сердечно-сосудистой системы используют дополнительные отведения ЭКГ. Их применение актуально, когда стандартные 12 схем не позволяют с точностью диагностировать заболевание, и требуется уточнение некоторых количественных показателей.

Отличие дополнительных способов присоединения электродов от стандартных методик состоит в расположении активного датчика. Отрицательный полюс прибора в этом случае соединяют с электродом Вильсона.

Однополюсные отведения, обозначаемые аббревиатурой V7-V9, позволяют точнее выявить патологии миокарда в задних отделах левого желудочка. Активные датчики устанавливают в следующие области:

  • V7– по задней подмышечной линии;
  • V8 – по лопаточной линии;
  • V9 – по паравертебральной горизонтальной линии.

Расположение этих электродов должно совпадать с горизонтальной плоскостью, на которой находятся датчики V4-V6.

Помимо дополнительных однополюсных отведений, в диагностических целях используют диагностику по Небу. Установка датчиков происходит по следующим правилам:

  1. Электрод, обычно располагаемый на правой руке, помещают в правый край грудной клетки (в зону второго межреберья).
  2. Электрод зеленого цвета перемещают в верхнюю часть сердца.
  3. Датчик с желтой маркировкой располагают по задней линии подмышечной впадины на одной линии с зеленым электродом.
Отведения по Небу используются для выявления аномалий по задней стенке, преднебоковой и передней стенке миокарда.

Расшифровка результата и показания к процедуре

Ответить на вопрос, что показывают линии кардиограммы, может только опытный специалист. Во внимание берутся показатели зубцов Q, Р, R,T, S.

Норма показателей при исследовании:

  • расстояние между зубцами R одинаковое, разница составляет не более 10%;
  • частота пульса не более 80 ударов в минуту;
  • положение оси сердца полугоризонтальное или полувертикальное;
  • Зубец P и T в норме положительные.

Важно! При расшифровке результатов кардиолог должен учитывать возрастные особенности пациента. Это связано с тем, что у детей показатели ЭКГ отличаются от кардиограммы взрослого человека, и то, что может считаться нормой в первом случае, является патологией в последнем.

Проведение электрокардиографии назначается в следующих ситуациях:

  • при профилактических осмотрах;
  • перед выполнением хирургических операций на сердце;
  • для обследования состояния сердечно-сосудистой системы пациентов, страдающих от различных эндокринных нарушений;
  • с целью диагностики артериальной гипертензии;
  • для установления ишемии сердца, аритмии и выявления поражений стенок сердца;
  • при выявлении нарушений сердечного ритма.

Электрография считается наиболее точной методикой получения информации о состоянии сердца. Выделяется двенадцать стандартных отведений ЭКГ из 3 дополнительных. Какую из схем расположения датчиков применять в том или ином случае, определяет кардиолог. Полученные в результате обследования данные позволяют выявить многочисленные заболевания и провести своевременную терапию. Это, в свою очередь, предотвращает развитие состояний, опасных для жизни.

Основы электрокардиографии

Аппаратура для регистрации электрокардиограммы

Электрокардиография — метод графической регистрации изменений разности потенциалов сердца, возникающих в течение процессов возбуждения миокарда.

Первая регистрация электрокардиосигнала, прототипа современной ЭКГ, была предпринята В. Эйнтховеном в 1912 г . в Кембридже. После этого методика регистрации ЭКГ интенсивно совершенствовалась. Современные электрокардиографы позволяют осуществить как одноканальную, так и многоканальную запись ЭКГ.

В последнем случае синхронно регистрируются несколько различных электрокардиографических отведений (от 2 до 6–8), что значительно сокращает период исследования и дает возможность получить более точную информацию об электрическом поле сердца.

Электрокардиографы состоят из входного устройства, усилителя биопотенциалов и регистрирующего устройства. Разность потенциалов, возникающая на поверхности тела при возбуждении сердца, регистрируется с помощью системы электродов, закрепленных на разных участках тела. Электрические колебания преобразуются в механические смещения якоря электромагнита и тем или иным способом записываются на специальной движущейся бумажной ленте. Сейчас используют непосредственно как механическую регистрацию с помощью очень легкого пера, к которому подводятся чернила, так и тепловую запись ЭКГ с помощью пера, которое при нагревании выжигает соответствующую кривую на специальной тепловой бумаге.

Наконец, существуют такие электрокардиографы капиллярного типа (мингографы), в которых запись ЭКГ осуществляется с помощью тонкой струи разбрызгивающихся чернил.

Калибровка усиления, равная 1 мВ, вызывающая отклонение регистрирующей системы на 10 мм, позволяет сравнивать между собой ЭКГ, зарегистрированные у пациента в разное время и/или разными приборами.

Лентопротяжные механизмы во всех современных электрокардиографах обеспечивают движение бумаги с различной скоростью: 25, 50, 100 мм·с -1 и т.д. Чаще всего в практической электрокардиологии скорость регистрации ЭКГ составляет 25 или 50 мм·с -1 (рис 1.1).

Рис. 1.1. ЭКГ, зарегистрированные со скоростью 50 мм·с -1 (а) и 25 мм·с -1 (б). В начале каждой кривой показан калибровочный сигнал

Электрокардиографы должны устанавливаться в сухом помещении при температуре не ниже 10 и не выше 30 °С. Во время работы электрокардиограф должен быть заземлен

Изменения разности потенциалов на поверхности тела, возникающие во время работы сердца, записываются с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов, существующую между двумя определенными точками электрического поля сердца, в которых установлены электроды. Таким образом, разные электрокардиографические отведения отличаются между собой, прежде всего, участками тела, на которых измеряется разность потенциалов.

Электроды, установленные в каждой из выбранных точек на поверхности тела, подключаются к гальванометру электрокардиографа. Один из электродов присоединяют к положительному полюсу гальванометра (положительный или активный электрод отведения), второй электрод — к его отрицательному полюсу (отрицательный электрод отведения).

Сегодня в клинической практике наиболее широко используют 12 отведений ЭКГ, запись которых является обязательной при каждом электрокардиографическом обследовании больного: 3 стандартных отведения, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений.

Три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена), вершинами которого являются правая и левая руки, а также левая нога с установленными на них электродами. Гипотетическая линия, соединяющая два электрода, участвующие в образовании электрокардиографического отведения, называется осью отведения. Осями стандартных отведений являются стороны треугольника Эйнтховена (рис. 1. 2).

Рис. 1.2. Формирование трех стандартных отведений от конечностей

Перпендикуляры, проведенные из геометрического центра сердца к оси каждого стандартного отведения, делят каждую ось на две равные части. Положительная часть обращена в сторону положительного (активного) электрода отведения, а отрицательная — к отрицательному электроду. Если электродвижущая сила (ЭДС) сердца в какой-то момент сердечного цикла проецируется на положительную часть оси отведения, на ЭКГ записывается положительное отклонение (положительные зубцы R, Т, Р), а если на отрицательную — на ЭКГ регистрируются отрицательные отклонения (зубцы Q, S, иногда отрицательные зубцы Т или даже Р). Для записи этих отведений электроды накладывают на правой руке (красная маркировка) и левой (желтая маркировка), а также левой ноге (зеленая маркировка). Эти электроды попарно подключаются к электрокардиографу для регистрации каждого из трех стандартных отведений. Стандартные отведения от конечностей регистрируют попарно, подключая электроды:

I отведение — левая (+) и правая (–) рука;

II отведение — левая нога (+) и правая рука (–);

III отведение — левая нога (+) и левая рука (–);

Четвертый электрод устанавливается на правую но гу для подключения заземляющего провода (черная маркировка).

Знаками «+» и «–» здесь обозначено соответствующее подключение электродов к положительному или отрицатель ному полюсам гальванометра, то есть указаны положительный и отрицательный полюс каждого отведения.

Усиленные отведения от конечностей

Усиленные отведения от конечностей были предложены Гольдбергом в 1942 г . Они регистрируют разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или нога) и средним потенциалом двух других конечностей. В качестве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольдберга, который образуется при соединении двух конечностей через дополнительное сопротивление. Таким образом, aVR — это усиленное отведение от правой руки; aVL — усиленное отведение от левой руки; aVF — усиленное отведение от левой ноги (рис. 1.3).

Обозначение усиленных отведений от конечностей проис ходит от первых букв английских слов: « a » — augmented (усиленный); « V » — voltage (потенциал); «R» — right (правый); «L» — left (левый); «F» — foot (нога).

Рис. 1.3. Формирование трех усиленных однополюсных отведений от конечностей. Внизу — треугольник Эйнтховена и расположение осей трех усиленных однополюсных отведений от конечностей

Шестиосевая система координат (по BAYLEY)

Стандартные и усиленные однополюсные отведения от конечностей дают возможность зарегистрировать изменения ЭДС сердца во фронтальной плоскости, то есть в той, в которой расположен треугольник Эйнтховена. Для более точного и наглядного определения различных отклонений ЭДС сердца в этой фронтальной плоскости, в частности для определения положения электрической оси сердца, была предложена так называемая шестиосевая система координат (Bayley, 1943). Ее можно получить при совмещении осей трех стандартных и трех усиленных отведений от конечностей, проведенных через электрический центр сердца. Последний делит ось каждого отведения на положительную и отрицательную части, направленные, соответственно, к положительному (активному) или отрицательному электродам (рис. 1.4).

Рис. 1.4. Формирование шестиосевой системы координат (по Bayley)

Направление осей измеряют в градусах. За начало отсчета (0 °) условно принимают радиус, проведенный строго горизонтально из электрического центра сердца влево по направлению к активному положительному полюсу I стандартного отведения. Положительный полюс II стандартного отведения расположен под углом +60 °, отведения aVF — +90 °, III стандартного отведения — +120 °, aVL — – 30 °, a aVR — –150 °. Ось отведения aVL перпендикулярна оси II стандартного отведения, ось I стандартного отведения — оси aVF, а ось aVR —оси III стандартного отведения.

Грудные однополюсные отведения, предложенные Wilson в 1934 г ., регистрируют разность потенциалов между активным положительным электродом, установленным в определенных точках на поверхности грудной клетки и отрицательным объединенным электродом Вильсона. Этот электрод образуется при соединении через дополнительные сопротивления трех конечностей (правой и левой руки, а также левой ноги), объединенный потенциал которых близок к нулю (около 0,2 мВ). Для записи ЭКГ используют 6 общепринятых позиций активного электрода на передней и боковой поверхности грудной клетки, которые в сочетании с объединенным электродом Вильсона образуют 6 грудных отведений (рис. 1.5):

отведение V 1 — в четвертом межреберье по правому краю грудины;

отведение V 2 — в четвертом межреберье по левому краю грудины;

отведение V 3 — между позициями V 2 и V 4 , примерно на уровне четвертого ребра по левой парастернальной линии;

отведение V 4 — в пятом межреберье по левой срединно-ключичной линии;

отведение V 5 — на том же уровне по горизонтали, что и V 4 , по левой передней подмышечной линии;

отведение V 6 — по левой средней подмышечной линии на том же уровне по горизонтали, что и электроды отведений V 4 и V 5 .

Рис. 1.5. Расположение грудных электродов

Таким образом, наиболее широкое распространение получили 12 электрокардиографических отведений (3 стандартных, 3 усиленных однополюсных отведения от конечностей и 6 грудных).

Электрокардиографические отклонения в каждом из них отражают суммарную ЭДС всего сердца, то есть являются результатом одновременного воздействия на данное отведение изменяющегося электрического потенциала в левых и правых отделах сердца, в передней и задней стенке желудочков, в верхушке и основании сердца.

Диагностические возможности электрокардиографического исследования иногда целесообразно расширить при применении некоторых дополнительных отведений. Их используют в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет достаточно надежно диагностировать ту или иную электрокардиографическую патологию или требует уточнения некоторых изменений.

Методика регистрации дополнительных грудных отведений отличается от методики записи 6 общепринятых грудных от ведений лишь локализацией активного электрода на поверхности грудной клетки. В качестве электрода, соединенного с отрицательным полюсом кардиографа, используют объединенный электрод Вильсона.

Рис. 1.6. Расположение дополнительных грудных электродов

Отведения V7—V9 . Активный электрод устанавливают по задней подмышечной (V 7 ), лопаточной (V 8 ) и паравертебральной (V 9 ) линиях на уровне горизонтали, на которой расположены электроды V 4 —V 6 (рис. 1.6). Эти отведения обычно используют для более точной диагностики очаговых изменений миокарда в заднебазальных отделах ЛЖ.

Отведения V 3R—V6R. Грудной (активный) электрод помещают на правой половине грудной клетки в позициях, симметричных обычным точкам расположения электродов V 3 —V 6 . Эти отведения используют для диагностики гипертрофии правых отделов сердца.

Отведения по Нэбу. Двухполюсные грудные отведения, предложенные в 1938 г . Нэбом, фиксируют разность потенциалов между двумя точками, расположенными на поверхтности грудной клетки. Для записи трех отведений по Нэбу используют электроды, предназначенные для регистрации трех стандартных отведений от конечностей. Электрод, обычно устанавливаемый на правой руке (красная маркировка), помещают во втором межреберье по правому краю грудины. Электрод с левой ноги (зеленая маркировка) переставляют в позицию грудного отведения V 4 (у верхушки сердца), а электрод, располагающийся на левой руке (желтая маркировка), помещают на том же горизонтальном уровне, что и зеленый электрод, но по задней подмышечной линии. Если переключатель отведений электрокардиографа находится в положении I стандартного отведения, регистрируют отведение Dorsalis (D).

Перемещая переключатель на II и III стандартные отведения, записывают соответственно отведения Anterior (А) и Inferior (I). Отведения по Нэбу используют для диагностики очаговых изменений мио карда задней стенки (отведение D), передней боковой стенки (отведение А) и верхних отделов передней стенки (отведение I).

Техника регистрации ЭКГ

Для получения качественной записи ЭКГ необходимо придерживаться некоторых правил ее регистрации.

Условия проведения электрокардиографического исследования

ЭКГ регистрируют в специальном помещении, удаленном от возможных источников электрических помех: электромоторов, физиотерапевтических и рентгеновских кабинетов, распределительных электрощитов. Кушетка должна находиться на расстоянии не менее 1,5–2 м от проводов электросети.

Целесообразно экранировать кушетку, подложив под пациента одеяло со вшитой металлической сеткой, которая должна быть заземлена.

Исследование проводится после 10–15-минутного отдыха и не ранее чем через 2 ч после еды. Больной должен быть раздет до пояса, голени также освобождены от одежды.

Запись ЭКГ проводится обычно в положении лежа на спине, что позволяет добиться максимального расслабления мышц.

На внутреннюю поверхность голеней и предплечий в нижней их трети с помощью резиновых лент накладывают 4 пластинчатых электрода, а на грудь устанавливают один или несколько (при многоканальной записи) грудных электродов, используя резиновую грушу-присоску. Для улучшения качества ЭКГ и уменьшения количества наводных токов следует обеспечить хороший контакт электродов с кожей. Для этого необходимо: 1) предварительно обезжирить кожу спиртом в местах наложения электродов; 2) при значительной волосистости кожи смочить места наложения электродов мыльным раствором; 3) использовать электродную пасту или обильно смачивать кожу в местах наложения электродов 5–10% раствором натрия хлорида.

Подключение проводов к электродам

К каждому электроду, установленному на конечностях или на поверхности грудной клетки, присоединяют провод, идущий от электрокардиографа и маркированный определенным цветом. Общепринятой является маркировка входных проводов: правая рука — красный цвет; левая рука — желтый; левая нога — зеленый, правая нога (заземление пациента) — черный; грудной электрод — белый. При наличии 6-канального электрокардиографа, позволяющего одновременно зарегистрировать ЭКГ в 6 грудных отведениях, к электроду V 1 подключают провод, имеющий красную окраску на наконечнике; к электроду V 2 — желтую, V 3 — зеленую, V 4 — коричневую, V 5 — черную и V 6 — синюю или фиолетовую. Маркировка остальных проводов такая же, как и в одноканальных электрокардиографах.

Выбор усиления электрокардиографа

Прежде чем начинать запись ЭКГ, на всех каналах электрокардиографа необходимо установить одинаковое усиление электрического сигнала. Для этого в каждом электрокардиографе предусмотрена возможность подачи на гальванометр стандартного калибровочного напряжения (1 мВ). Обычно усиление каждого канала подбирается таким образом, чтобы напряжение 1 мВ вызывало отклонение гальванометра и регистрирующей системы, равное 10 мм . Для этого в положении переключателя отведений «0» регулируют усиление электрокардиографа и регистрируют калибровочный милли вольт. При необходимости можно изменить усиление: снизить при слишком большой амплитуде зубцов ЭКГ (1 мВ = 5 мм) или повысить при малой их амплитуде (1 мВ = 15 или 20 мм ).

Запись ЭКГ проводят при спокойном дыхании, а также на высоте вдоха (в отведении III). Вначале записывают ЭКГ в стандартных отведениях (I, II, III), затем в усиленных отведениях от конечностей (aVR, aVL и aVF) и грудных (V 1 –V 6). В каждом отведении записывают не менее 4 сердечных циклов PQRST. ЭКГ регистрируют, как правило, при скорости движения бумаги 50 мм·с -1 . Меньшую скорость (25 мм·с -1 ) используют при необходимости более длительной записи ЭКГ, например для диагностики нарушений ритма.

Сразу после окончания исследования на бумажной ленте записывают фамилию, имя и отчество пациента, год рождения, дату и время исследования.

Зубец Р отражает процесс деполяризации правого и левого предсердий. В норме во фронтальной плоскости средний результирующий вектор деполяризации предсердий (вектор Р) расположен почти параллельно оси II стандартного отведения и проецируется на положительные части осей отведений II, aVF, I и III. Поэтому в этих отведениях обычно регистрируется положительный зубец Р, имеющий максимальную амплитуду в I и II отведениях.

В отведении aVR зубец Р всегда отрицательный, так как вектор Р проецируется на отрицательную часть оси этого отведения. Поскольку ось отведения aVL перпендикулярна направлению среднего результирующего вектора Р, его проекция на ось этого отведения близка к нулю, на ЭКГ в большинстве случаев регистрируются двухфазный или низкоамплитудный зубец Р.

При более вертикальном расположении сердца в грудной клетке (например у лиц с астеническим телосложением), когда вектор Р оказывается параллельным оси отведения aVF, (рис. 1.7), амплитуда зубца Р увеличивается в отведениях III и aVF и уменьшается в отведениях I и aVL. Зубец P в aVL при этом может стать даже отрицательным.

Рис. 1.7. Формирование зубца Р в отведениях от конечностей

Наоборот, при более горизонтальном положении сердца в грудной клетке (например у гиперстеников) вектор Р параллелен оси I стандартного отведения. При этом амплитуда зубца Р увеличивается в отведениях I и aVL. P aVL становится положительным и уменьшается в отведениях III и aVF. В этих случаях проекция вектора Р на ось III стандартного отведения равна нулю или даже имеет отрицательное значение. Поэтому зубец P в III отведении может быть двухфазным или отрицательным (чаще при гипертрофии левого предсердия).

Таким образом, у здорового человека в отведениях I, II и aVF зубец Р всегда положительный, в отведениях III и aVL он может быть положительным, двухфазным или (редко) отрицательным, а в отведении aVR зубец Р всегда отрицательный.

В горизонтальной плоскости средний результирующий век тор Р обычно совпадает с направлением осей грудных отведений V 4 —V 5 и проецируется на положительные части осей отведений V 2 —V 6 , как это показано на рис. 1.8. Поэтому у здорового человека зубец Р в отведениях V 2 —V 6 всегда положительный.

Рис. 1.8. Формирование зубца Р в грудных отведениях

Направление среднего вектора Р почти всегда перпендикулярно оси отведения V 1 , в то же время направление двух моментных векторов деполяризации разное. Первый начальный моментный вектор возбуждения предсердий ориентирован вперед, в сторону положительного электрода отведения V 1 , а второй конечный моментный вектор (меньший по величине) обращен назад, в сторону отрицательного полюса отведения V 1 . Поэтому зубец P в V 1 чаще бывает двухфазным (+-).

Первая положительная фаза зубца P в V 1 , обусловленная возбуждением правого и частично левого предсердий, больше второй отрицательной фазы зубца P в V 1 , отражающей относительно короткий период конечного возбуждения только левого предсердия. Иногда вторая отрицательная фаза зубца P в V 1 слабо выражена и зубец P в V 1 положительный.

Таким образом, у здорового человека в грудных отведениях V 2 –V 6 всегда регистрируется положительный зубец Р, а в от ведении V 1 он может быть двухфазным или положительным.

Амплитуда зубцов Р в норме не превышает 1,5–2,5 мм, а продолжительность — 0,1 с.

Интервал Р–Q(R) измеряется от начала зубца Р до на чала желудочкового комплекса QRS (зубца Q или R). Он отражает продолжительность АV-проведения, то есть время распространения возбуждения по предсердиям, АV-узлу, пучку Гиса и его разветвлениям (рис. 1.9). Не следует интервал Р–Q(R) с сегментом РQ(R), который измеряется от конца зубца Р до начала Q или R

Длительность интервала Р–Q(R) колеблется от 0,12 до 0,20 с и у здорового человека зависит в основном от ЧСС: чем она выше, тем короче интервал Р–Q(R).

Желудочковый комплекс QRS T

Желудочковый комплекс QRST отражает сложный процесс распространения (комплекс QRS) и угасания (сегмент RS–Т и зубец Т) возбуждения по миокарду желудочков. Если амплитуда зубцов комплекса QRS достаточно велика и превышает 5 мм , их обозначают заглавными буквами латинского алфавита Q, R, S, если мала (менее 5 мм ) — строчными буквами q, r, s.

Зубцом R обозначают любой положительный зубец, входящий в состав комплекса QRS. Если имеется несколько таких положительных зубцов, их обозначают соответственно как R, Rj, Rjj и т.д. Отрицательный зубец комплекса QRS, непосредственно предшествующий зубцу R, обозначают буквой Q (q), а отрицательный зубец, следующий сразу после зубца R, — S (s).

Если на ЭКГ регистрируется только отрицательное отклонение, а зубец R отсутствует совсем, желудочковый комплекс обозначают как QS. Формирование отдельных зубцов комплекса QRS в различных отведениях можно объяснить существованием трех моментных векторов желудочковой деполяризации и различной их проекцией на оси ЭКГ-отведений.

В большинстве ЭКГ-отведений формирование зубца Q обу словлено начальным моментным вектором деполяризации меж желудочковой перегородки, длящейся до 0,03 с. В норме зубец Q может быть зарегистрирован во всех стандартных и усиленных однополюсных отведениях от конечностей и в грудных отведениях V 4 –V 6 . Амплитуда нормального зубца Q во всех отведениях, кроме aVR, не превышает 1 / 4 высоты зубца R, а его продолжительность — 0,03 с. В отведении aVR у здорового человека может быть зафиксирован глубокий и широкий зубец Q или даже комплекс QS.

Зубец R во всех отведениях, за исключением правых грудных отведений (V 1 , V 2 ) и отведения aVR, обусловлен проекцией на оси отведения второго (среднего) моментного вектора QRS, или условно вектора 0,04 с. Вектор 0,04 с отражает процесс дальнейшего распространения возбуждения по миокарду ПЖ и ЛЖ. Но, поскольку ЛЖ является более мощным отделом сердца, вектор R ориентирован влево и вниз, то есть в сторону ЛЖ. На рис. 1.10а видно, что во фронтальной плоскости вектор 0,04 с проецируется на положительные части осей отведений I, II, III, aVL и aVF и на отрицательную часть оси отведения aVR. Поэтому во всех отведениях от конечностей, за исключением aVR, формируются высокие зубцы R, причем при нормальном анатомическом положении сердца в грудной клетке зубец R в отведении II имеет максимальную амплитуду. В отведении aVR, как было сказано выше, всегда преобладает отрицательное отклонение — зубец S, Q или QS, обусловленный проекцией вектора 0,04 с на отрицательную часть оси этого отведения.

При вертикальном положении сердца в грудной клетке зубец R становится максимальным в отведениях aVF и II, а при горизонтальном положении сердца — в I стандартном отведении. В горизонтальной плоскости вектор 0,04 с обычно совпадает с направлением оси отведения V 4 . Поэтому зубец R в V 4 превышает по амплитуде зубцы R в остальных грудных отведениях, как это показано на рис. 1.10б. Таким образом, в левых грудных отведениях (V 4 –V 6 ) зубец R формируется в результате проекции главного моментного вектора 0,04 с на положительные части этих отведений.

Рис. 1.10. Формирование зубца R в отведениях от конечностей

Оси правых грудных отведений (V 1 , V 2 ) обычно перпендикулярны направлению главного моментного вектора 0,04 с, по этому последний почти не оказывает своего влияния на эти отведения. Зубец R в отведениях V 1 и V 2 , как было показано выше, формируется в результате проекции на оси этих отведений начального моментного выбора (0,02 с) и отражает распространение возбуждения по межжелудочковой перегородке.

В норме амплитуда зубца R постепенно увеличивается от отведения V 1 к отведению V 4 , а затем вновь несколько уменьшается в отведениях V 5 и V 6 . Высота зубца R в отведениях от конечностей не превышает обычно 20 мм , а в грудных отведениях — 25 мм . Иногда у здоровых людей зубец r в V 1 столь слабо выражен, что желудочковый комплекс в отведении V 1 приобретает вид QS.

Для сравнительной характеристики времени распространения волны возбуждения от эндокарда до эпикарда ПЖ и ЛЖ принято определять так называемый интервал внутреннего отклонения (intrinsical defl ection) соответственно в правых (V 1 , V 2 ) и левых (V 5 , V 6 ) грудных отведениях. Он измеряется от начала желудочкового комплекса (зубца Q или R) до вершины зубца R в соответствующем отведении, как показано на рис. 1.11.

Рис. 1.11. Измерение интервала внутреннего отклонения

При наличии расщеплений зубца R (комплексы типа RSRj или qRsrj) интервал измеряется от начала комплекса QRS до вер шины последнего зубца R.

В норме интервал внутреннего отклонения в правом грудном отведении (V 1 ) не превышает 0,03 с, а в левом грудном отведении V 6 –0,05 с.

У здорового человека амплитуда зубца S в разных ЭКГ-отведениях колеблется в больших пределах, не превышая 20 мм .

При нормальном положении сердца в грудной клетке в отведениях от конечностей амплитуда S мала, кроме отведения aVR. В грудных отведениях зубец S постепенно уменьшается от V 1 , V 2 до V 4 , а в отведениях V 5 , V 6 имеет малую амплитуду или отсутствует.

Равенство зубцов R и S в грудных отведениях (переходная зона) обычно регистрируется в отведении V 3 или (реже) между V 2 и V 3 или V 3 и V 4 .

Максимальная продолжительность желудочкового комплекса не превышает 0,10 с (чаще 0,07–0,09 с).

Амплитуда и соотношение положительных (R) и отрицательных зубцов (Q и S) в различных отведениях во многом зависят от поворотов оси сердца вокруг трех его осей: переднезадней, продольной и сагиттальной.

Сегмент RS–Т — отрезок от конца комплекса QRS (конца зубца R или S) до начала зубца Т. Он соответствует периоду полного охвата возбуждением обоих желудочков, когда разность потенциалов между различными участками сердечной мышцы отсутствует или мала. Поэтому в норме в стандартных и усиленных однополюсных отведениях от конечностей, электроды которых расположены на большом расстоянии от сердца, сегмент RS—Т расположен на изолинии и его смещение вверх или вниз не превышает 0,5 мм . В грудных отведениях (V 1 –V 3 ) даже у здорово го человека нередко отмечают небольшое смещение сегмента RS–Т вверх от изолинии (не более 2 мм ).

В левых грудных отведениях сегмент RS–T чаще регистрируется на уровне изолинии — так же, как в стандартных (± 0,5 мм ).

Точка перехода комплекса QRS в сегмент RS–Т обозначается как j. Отклонения точки j от изолинии часто используют для количественной характеристики смещения сегмента RS–Т.

Зубец T отражает процесс быстрой конечной реполяризации миокарда желудочков (фаза 3 трансмембранного ПД). В норме суммарный результирующий вектор желудочковой реполяризации (вектор Т) обычно имеет почти такое же направление, как и средний вектор деполяризации желудочков (0,04 с). Поэтому в большинстве отведений, где регистрируется высокий зубец R, зубец Т имеет положительное значение, проецируясь на положительные части осей электрокардиографических отведений (рис. 1.12). При этом наибольшему зубцу R соответствует наибольший по амплитуде зубец Т, и наоборот.

Рис. 1.12. Формирование зубца Т в отведениях от конечностей

В отведении aVR зубец T всегда отрицательный.

При нормальном положении сердца в грудной клетке на правление вектора Т иногда бывает перпендикулярным оси III стандартного отведения, в связи с чем в этом отведении иногда может регистрироваться двухфазный (+/–) или низко амплитудный (сглаженный) зубец T в III.

При горизонтальном расположении сердца вектор Т может проецироваться даже на отрицательную часть оси отведения III и на ЭКГ регистрируется отрицательный зубец Т в III. Однако в отведении aVF при этом зубец Т остается положительным.

При вертикальном расположении сердца в грудной клетке вектор Т проецируется на отрицательную часть оси отведения aVL и на ЭКГ фиксируется отрицательный зубец T в aVL.

В грудных отведениях зубец Т обычно имеет максимальную амплитуду в отведении V 4 или V 3 . Высота зубца T в грудных отведениях обычно увеличивается от V 1 к V 4, а затем несколько уменьшается в V 5 –V 6 . В отведении V 1 зубец Т может быть двухфазным или даже отрицательным. В норме всегда T в V 6 больше Т в V 1 .

Амплитуда зубца Т в отведениях от конечностей у здорового человека не превышает 5–6 мм, а в грудных отведениях — 15–17 мм. Продолжительность зубца Т колеблется от 0,16 до 0,24 с.

Интервал Q–Т (QRST) измеряется от начала комплекса QRS (зубца Q или R) до конца зубца Т. Интервал Q–Т (QRST) называют электрической систолой желудочков. Во время электрической систолы возбуждаются все отделы желудочков сердца. Продолжительность интервала Q–Т в первую очередь зависит от частоты ритма сердца. Чем выше частота ритма, тем короче должный интервал Q–Т. Нормальная продолжительность интервала Q–Т определяется по формуле Q–Т=K√R–R, где К — коэффициент, равный 0,37 для мужчин и 0,40 для женщин; R–R — продолжительность одного сердечного цикла. Поскольку длительность интервала Q–T зависит от ЧСС (удлиняясь при его замедлении), для оценки она должна быть откорректирована относительно ЧСС, поэтому для расчетов применяется формула Базетта: QТс=Q–T/√R–R.

Иногда на ЭКГ, особенно в правых грудных отведениях, сразу после зубца Т регистрируется небольшой положительный зубец U, происхождение которого до сих пор неизвестно. Есть предположения, что зубец U соответствует периоду кратковременного повышения возбудимости миокарда желудочков (фаза экзальтации), наступающему после окончания электрической систолы ЛЖ.

О.С. Сычев, Н.К. Фуркало, Т.В. Гетьман, С.И. Деяк "Основы элекрокардиографии"